By Topic

Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tak-Keung Liang ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, China ; Hon-Ki Tsang

We study the nonlinearities in silicon-on-insulator (SOI) optical waveguides, which include two-photon absorption (TPA), free-carrier absorption, and spontaneous and stimulated Raman scattering (SRS). We show experimentally that free carriers generated by TPA in the SOI waveguides produce large optical loss at room temperature. The experimental results confirmed the presence of relative optical signal amplification from SRS, but it was found that net gain was hardly achieved because the stimulated Raman gain was less than the induced loss from TPA-generated free carriers at room temperature with continuous-wave pumping source in a SOI rib waveguide. We also experimentally investigated the temperature dependence of Raman scattering in the SOI waveguide and observed the Raman gain to be greater than TPA-generated free-carrier absorption loss at 77 K.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:10 ,  Issue: 5 )