Cart (Loading....) | Create Account
Close category search window
 

Algebras with polynomial identities and computing the determinant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien, S. ; Microsoft Res., Mountain View, CA, USA ; Sinclair, A.

Nisan (1991) proved an exponential lower bound on the size of an algebraic branching program (ABP) that computes the determinant of a matrix in the non-commutative "free algebra" setting, in which there are no non-trivial relationships between the matrix entries. By contrast, when the matrix entries commute there are polynomial size ABPs for the determinant. This paper extends Nisan's result to a much wider class of non-commutative algebras, including all non-trivial matrix algebras over any field of characteristic 0, group algebras of all non-abelian finite groups over algebraically closed fields of characteristic 0, the quaternion algebra and the Clifford algebras. As a result, we obtain more compelling evidence for the essential role played by commutativity in the efficient computation of the determinant. The key to our approach is a characterization of non-commutative algebras by means of the polynomial identities that they satisfy. Extending Nisan's lower bound framework, we find that any reduction in complexity compared to the free algebra must arise from the ability of the identities to reduce the rank of certain naturally associated matrices. Using results from the theory of algebras with polynomial identities, we are able to show that none of the identities of the above classes of algebras is able to achieve such a rank reduction.

Published in:

Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on

Date of Conference:

17-19 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.