By Topic

An approximate max-Steiner-tree-packing min-Steiner-cut theorem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lap Chi Lau ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada

Given an undirected multigraph G and a subset of vertices S ⊆ V(G), the Steiner tree packing problem is to find a largest collection of edge-disjoint trees that each connects S. This problem and its generalizations have attracted considerable attention from researchers in different areas because of their wide applicability. This problem was shown to be APX-hard (no polynomial time approximation scheme unless P=NP). In fact, prior to this paper, not even an approximation algorithm with asymptotic ratio o(n) was known despite several attempts. In this work, we close this huge gap by presenting the first polynomial time constant factor approximation algorithm for the Steiner tree packing problem. The main theorem is an approximate min-max relation between the maximum number of edge-disjoint trees that each connects S (i.e. S-trees) and the minimum size of an edge-cut that disconnects some pair of vertices in S (i.e. S-cut). Specifically, we prove that if the minimum S-cut in G has 26k edges, then G has at least k edge-disjoint S-trees; this answers Kriesell's conjecture affirmatively up to a constant multiple. The techniques that we use are purely combinatorial, where matroid theory is the underlying ground work.

Published in:

Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on

Date of Conference:

17-19 Oct. 2004