Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Side match and overlap match vector quantizers for images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Taejeong Kim ; AT&T Bell Lab., Murray Hill, NJ, USA

A class of vector quantizers with memory that are known as finite state vector quantizers (FSVQs) in the image coding framework is investigated. Two FSVQ designs, namely side match vector quantizers (SMVQs) and overlap match vector quantizers (OMVQs), are introduced. These designs take advantage of the 2-D spatial contiguity of pixel vectors as well as the high spatial correlation of pixels in typical gray-level images. SMVQ and OMVQ try to minimize the granular noise that causes visible pixel block boundaries in ordinary VQ. For 512 by 512 gray-level images, SMVQ and OMVQ can achieve communication quality reproduction at an average of 1/2 b/pixel per image frame, and acceptable quality reproduction. Because block boundaries are less visible, the perceived improvement in quality over ordinary VQ is even greater. Owing to the structure of SMVQ and OMVQ, simple variable length noiseless codes can achieve as much as 60% bit rate reduction over fixed-length noiseless codes

Published in:

Image Processing, IEEE Transactions on  (Volume:1 ,  Issue: 2 )