Cart (Loading....) | Create Account
Close category search window
 

Surflets: a sparse representation for multidimensional functions containing smooth discontinuities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chandrasekaran, V. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Wakin, M.B. ; Baron, D. ; Baraniuk, R.G.

Discontinuities in data often provide vital information, and representing these discontinuities sparsely is an important goal for approximation and compression algorithms. Little work has been done on efficient representations for higher dimensional functions containing arbitrarily smooth discontinuities. We consider the N-dimensional Horizon class-N-dimensional functions containing a CK smooth (N-1)-dimensional singularity separating two constant regions. We derive the optimal rate-distortion function for this class and introduce the multiscale surflet representation for sparse piecewise approximation of these functions. We propose a compression algorithm using surflets that achieves the optimal asymptotic rate-distortion performance for Horizon functions. This algorithm can be implemented using knowledge of only the N-dimensional function, without explicitly estimating the (N-1)-dimensional discontinuity.

Published in:

Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on

Date of Conference:

27 June-2 July 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.