By Topic

Application of the Gibbs distribution to hidden Markov modeling in speaker independent isolated word recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A method of integrating the Gibbs distributions (GDs) into hidden Markov models (HMMs) is presented. The probabilities of the hidden state sequences of HMMs are modeled by GDs in place of the transition probabilities. The GDs offer a general way in modeling neighbor interactions of Markov random fields where the Markov chains in HMMs are special cases. An algorithm for estimating the model parameters is developed based on Baum reestimation, and an algorithm for computing the probability terms is developed using a lattice structure. The GD models were used for experiments in speech recognition on the TI speaker-independent, isolated digit database. The observation sequences of the speech signals were modeled by mixture Gaussian autoregressive densities. The energy functions of the GDs were developed using very few parameters and proved adequate in hidden layer modeling. The results of the experiments showed that the GD models performed at least as well as the HMM models

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 6 )