Cart (Loading....) | Create Account
Close category search window
 

A low-voltage lateral MEMS switch with high RF performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ye Wang ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA ; Zhihong Li ; McCormick, D.T. ; Tien, N.C.

MEMS switches are one of the most promising future micromachined products that have attracted numerous research efforts in recent years. The majority of MEMS switches reported to date employ electrostatic actuation, which requires large actuation voltages. Few are lateral relays and those often require nonstandard post process, and none of them is intended for high-frequency applications. We have developed an electrothermally actuated lateral-contact microrelay for RF applications. It is designed and fabricated on both low-resistivity and high-resistivity silicon substrate using surface micromachining techniques. The microrelay utilizing the parallel six-beam actuator requires an actuation voltage of 2.5-3.5 V. Time response is measured to be 300 μs and maximum operating frequency is 2.1 kHz. The RF signal line has a current handling capability of approximately 50 mA. The microrelay's power consumption is in the range of 60-100 mW. The lateral contact mechanism of the microrelay provides a high RF performance. The microrelay has an off-state isolation of -20 dB at 40 GHz and an insertion loss of -0.1 dB up to 50 GHz. The simplicity of this 4-mask fabrication process enables the possibility of integrating the microrelay with other passive RF MEMS components.

Published in:

Microelectromechanical Systems, Journal of  (Volume:13 ,  Issue: 6 )

Date of Publication:

Dec. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.