Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Verifying the UNIPEN devset

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vuurpijl, L. ; Nijmegen Inst. for Cognition & Information, Netherlands ; Niels, R. ; van Erp, M. ; Schomaker, L.
more authors

This paper describes a semi-automated procedure for the verification of a large human-labeled data set containing online handwriting. A number of classifiers trained on the UNIPEN "trainset" is employed for detecting anomalies in the labels of the UNIPEN "devset". Multiple classifiers with different feature sets are used to increase the robustness of the automated procedure and to ensure that the number of false accepts is kept to a minimum. The rejected samples are manually categorized into four classes: (i) recoverable segmentation errors, (ii) incorrect (recoverable) labels, (iii) well-segmented but ambiguous cases and (iv) unrecoverable segments that should be removed. As a result of the verification procedure, a well-labeled data set is currently being generated, which will be made available to the handwriting recognition community.

Published in:

Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on

Date of Conference:

26-29 Oct. 2004