By Topic

Learning HMM structure for on-line handwriting modelization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Binsztok, H. ; LIP6, Universite Paris IV, France ; Artieres, T.

We present a hidden Markov model-based approach to model on-line handwriting sequences. This problem is addressed in term of learning both hidden Markov models (HMM) structure and parameters from data. We iteratively simplify an initial HMM that consists in a mixture of as many left-right HMM as training sequences. There are two main applications of our approach: allograph identification and classification. We provide experimental results on these two different tasks.

Published in:

Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on

Date of Conference:

26-29 Oct. 2004