By Topic

Using HMM based recognizers for writer identification and verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schlapbach, A. ; Dept. of Comput. Sci., Bern Univ., Switzerland ; Bunke, H.

In this paper, we use HMM based recognizers for the identification and verification of persons based on their handwriting. For each writer, we build an individual recognizer and train it on text lines of that writer. This gives us recognizers that are experts on the handwriting of exactly one writer. In the identification or verification phase, a text line of unknown origin is presented to each of these recognizers and each one returns a transcription that includes the log-likelihood score for the considered input. These scores are sorted and the resulting ranking is used for both identification and verification. In an identification experiment in 96.56% of all cases the writer out of a set of 100 writers is correctly identified. Second, in a verification experiment using over 8,600 text lines from 120 writers an equal error rate (EER) of about 2.5% is achieved.

Published in:

Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on

Date of Conference:

26-29 Oct. 2004