Cart (Loading....) | Create Account
Close category search window
 

Normalization ensemble for handwritten character recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Lin Liu ; Central Res. Lab., Hitachi Ltd., Tokyo, Japan ; Marukawa, K.

This paper proposes a multiple classifier approach, called normalization ensemble, for handwritten character recognition by combining multiple normalization methods. By varying the coordinate mapping mode, we have devised 14 normalization functions, and switching on/off slant correction results in 28 instantiated classifiers. We would show that the classifiers with different normalization methods are complementary and the combination of them can significantly improve the recognition accuracy. In experiments of handwritten digit recognition on the NIST special database 19, the normalization ensemble was shown to reduce the error rate by factors from 10.6% to 26.9% and achieved the best error rate 0.43%. We also show that the complexity of normalization ensemble can be reduced by selecting seven classifiers from 28 with little loss of accuracy.

Published in:

Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on

Date of Conference:

26-29 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.