By Topic

Mining sequential patterns from multidimensional sequence data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Ching Yu ; Dept. of Inf. Manage., Nat. Central Univ., Chung-li, Taiwan ; Yen-Liang Chen

The problem addressed in This work is to discover the frequently occurred sequential patterns from databases. Although much work has been devoted to this subject, to the best of our knowledge, no previous research was able to find sequential patterns from d-dimensional sequence data, where d>2. Without such a capability, many practical data would be impossible to mine. For example, an online stock-trading site may have a customer database, where each customer may visit a Web site in a series of days; each day takes a series of sessions and each session visits a series of Web pages. Then, the data for each customer forms a 3-dimensional list, where the first dimension is days, the second is sessions, and the third is visited pages. To mine sequential patterns from this kind of sequence data, two efficient algorithms have been developed in This work.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 1 )