By Topic

Interpretable hierarchical clustering by constructing an unsupervised decision tree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Basak ; IBM India Res. Lab., Indian Inst. of Technol., New Delhi, India ; R. Krishnapuram

We propose a method for hierarchical clustering based on the decision tree approach. As in the case of supervised decision tree, the unsupervised decision tree is interpretable in terms of rules, i.e., each leaf node represents a cluster, and the path from the root node to a leaf node represents a rule. The branching decision at each node of the tree is made based on the clustering tendency of the data available at the node. We present four different measures for selecting the most appropriate attribute to be used for splitting the data at every branching node (or decision node), and two different algorithms for splitting the data at each decision node. We provide a theoretical basis for the approach and demonstrate the capability of the unsupervised decision tree for segmenting various data sets. We also compare the performance of the unsupervised decision tree with that of the supervised one.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:17 ,  Issue: 1 )