Cart (Loading....) | Create Account
Close category search window
 

Improving availability and performance with application-specific data replication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Gao ; Dept. of Comput. Sci., Texas Univ., Austin, TX, USA ; Dahlin, M. ; Nayate, A. ; Jiandan Zheng
more authors

The emerging edge services architecture promises to improve the availability and performance of Web services by replicating servers at geographically distributed sites. A key challenge in such systems is data replication and consistency, so that edge server code can manipulate shared data without suffering the availability and performance penalties that would be incurred by accessing a traditional centralized database. This work explores using a distributed object architecture to build an edge service data replication system for an e-commerce application, the TPC-W benchmark, which simulates an online bookstore. We take advantage of application-specific semantics to design distributed objects that each manages a specific subset of shared information using simple and effective consistency models. Our experimental results show that by slightly relaxing consistency within individual distributed objects, our application realizes both high availability and excellent performance. For example, in one experiment, we find that our object-based edge server system provides five times better response time over a traditional centralized cluster architecture and a factor of nine improvement over an edge service system that distributes code but retains a centralized database.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.