By Topic

Pruning and visualizing generalized association rules in parallel coordinates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Li Yang ; Dept. of Comput. Sci., Western Michigan Univ., Kalamazoo, MI, USA

One fundamental problem for visualizing frequent itemsets and association rules is how to present a long border of frequent itemsets in an itemset lattice. Another problem comes from the lack of an effective visual metaphor to represent many-to-many relationships. This work proposes an approach for visualizing frequent itemsets and many-to-many association rules by a novel use of parallel coordinates. An association rule is visualized by connecting items in the rule, one item on each parallel coordinate, with continuous polynomial curves. In the presence of item taxonomy, each coordinate can be used to visualize an item taxonomy tree which can be expanded or shrunk by user interaction. This user interaction introduces a border, which separates displayable itemsets from nondisplayable ones, in the generalized itemset lattice. Only those itemsets that are both frequent and displayable are considered to be displayed. This approach of visualizing frequent itemsets and association rules has the following features: 1) It is capable of visualizing many-to-many rules and itemsets with many items. 2) It is capable of visualizing a large number of itemsets or rules by displaying only those ones whose items are selected by the user. 3) The closure properties of frequent itemsets and association rules are inherently supported such that the implied ones are not displayed. Usefulness of this approach is demonstrated through examples.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 1 )