By Topic

Parallel implementation of back-propagation algorithm in networks of workstations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suresh, S. ; Dept. of Aerosp. Eng., Indian Inst. of Sci., Bangalore, India ; Omkar, S.N. ; Mani, V.

This work presents an efficient mapping scheme for the multilayer perceptron (MLP) network trained using back-propagation (BP) algorithm on network of workstations (NOWs). Hybrid partitioning (HP) scheme is used to partition the network and each partition is mapped on to processors in NOWs. We derive the processing time and memory space required to implement the parallel BP algorithm in NOWs. The performance parameters like speed-up and space reduction factor are evaluated for the HP scheme and it is compared with earlier work involving vertical partitioning (VP) scheme for mapping the MLP on NOWs. The performance of the HP scheme is evaluated by solving optical character recognition (OCR) problem in a network of ALPHA machines. The analytical and experimental performance shows that the proposed parallel algorithm has better speed-up, less communication time, and better space reduction factor than the earlier algorithm. This work also presents a simple and efficient static mapping scheme on heterogeneous system. Using divisible load scheduling theory, a closed-form expression for number of neurons assigned to each processor in the NOW is obtained. Analytical and experimental results for static mapping problem on NOWs are also presented.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 1 )