By Topic

A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Storms, P.P.A. ; Acklin B.V., Waalwijk, Netherlands ; van Veelen, J.B. ; Boasson, E.

In this work, we present a new approach to distributed sensor data fusion (SDF) systems in multitarget tracking, called TSDF (Tessellated SDF), centered around a geographical partitioning (tessellation) of the data. A functional decomposition divides SDF into components that can be assigned to processing units, parallelizing the processing. The tessellation implicitly defines the set of tracks potentially yielding correlations with the sensor plots (observations) in a tile. Some tracks may occur as correlation candidates for multiple tiles. Conflicts caused by correlations of such tracks with plots in different tiles, are resolved by combining all involved tracks and plots into independent data association problems. The benefit of the TSDF approach to a clustering-based process distribution is independence of the problem space, which yields better scalability and manageability characteristics. The TSDF approach allows scaling in more than one way. It allows SDF for single sensor, multiple sensors on a single platform, and even for multiple sensors on multiple platforms. It also provides the flexibility to scale the processing to the size of the problem. This enables a better control of the throughput, to meet various timing constraints.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 1 )