By Topic

A reliability study of barrier-metal-clad copper interconnects with self-aligned metallic caps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Saito, T. ; Process Technol. Dept., Hitachi Ltd., Tokyo, Japan ; Ashihara, H. ; Ishikawa, K. ; Miyauchi, M.
more authors

An advanced interconnection technology was studied by evaluating the performance of copper (Cu) interconnections capped with a barrier metal. Good selectivity of self-aligned tungsten (W) caps grown by chemical vapor deposition was obtained, and the isolation resistance and leakage current between adjacent Cu interconnects capped with W were similar to those between conventional Cu interconnects. There were also no significant wiring resistance or via resistance differences of between W-capped Cu interconnects and conventional Cu interconnects. When two-level Cu interconnects were fabricated to check the effects of the undulation of the interlayer dielectric deposited on W-capped Metal-1 lines, good isolation of fine-pitch Metal-2 lines was obtained. The reliability of metal-capped structures was evaluated by measuring time-dependent dielectric breakdown (TDDB), electromigration, and stressmigration. The TDDB lifetime of adjacent W-capped Cu interconnects 0.15 μm apart was found to be at least as long as that of conventional Cu interconnects with the same spacing, and the electromigration lifetime of W-capped Cu interconnects was found to be superior to that of conventional Cu interconnects. Furthermore, self-aligned caps of W or cobalt tungsten boron were found to suppress the stress-induced voiding of Cu interconnects.

Published in:

Electron Devices, IEEE Transactions on  (Volume:51 ,  Issue: 12 )