By Topic

A new upper bound on the ML decoding error probability of linear binary block codes in AWGN interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Yousefi ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; A. K. Khandani

Performance evaluation of maximum-likelihood (ML) soft-decision-decoded binary block codes is usually carried out using bounding techniques. Many tight upper bounds on the error probability of binary codes are based on the so-called Gallager's first bounding technique (GFBT). The tangential sphere bound (TSB) of Poltyrev which has been believed for many years to offer the tightest bound developed for binary block codes is an example. Within the framework of the TSB and GFBT, we apply a new method referred to as the "added-hyper-plane" (AHP) technique, to the decomposition of the error probability. This results in a bound developed upon the application of two stages of the GFBT with two different Gallager regions culminating in a tightened upper bound beyond the TSB. The proposed bound is simple and only requires the spectrum of the binary code.

Published in:

IEEE Transactions on Information Theory  (Volume:50 ,  Issue: 12 )