By Topic

Detection and localization of defects in shielded cables by time-domain measurements with UWB pulse injection and clean algorithm postprocessing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Buccella, C. ; Dept. of Electr. Eng., Univ. of L''Aquila, Poggio Di Roiao, Italy ; Feliziani, M. ; Manzi, G.

An experimental procedure to detect and localize defects in shielded cables is presented. First, time-domain measurements are carried out by injecting a short rise time pulse in the input section of the shielded cable. Then, the clean algorithm is applied to the measurement results to identify possible damages in the cable line. The localization of the cable section with defects is finally obtained in a very simple way due to the adopted method of measurement in time domain using a ultrawide-band pulser with a very fast rise time. The proposed method is validated by detecting and localizing known defects purposely introduced in test cables.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:46 ,  Issue: 4 )