By Topic

All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

21 Author(s)
Staszewski, R.B. ; Wireless Analog Technol. Center, Texas Instrum. Inc., Dallas, TX, USA ; Muhammad, K. ; Leipold, D. ; Chih-Ming Hung
more authors

We present a single-chip fully compliant Bluetooth radio fabricated in a digital 130-nm CMOS process. The transceiver is architectured from the ground up to be compatible with digital deep-submicron CMOS processes and be readily integrated with a digital baseband and application processor. The conventional RF frequency synthesizer architecture, based on the voltage-controlled oscillator and the phase/frequency detector and charge-pump combination, has been replaced with a digitally controlled oscillator and a time-to-digital converter, respectively. The transmitter architecture takes advantage of the wideband frequency modulation capability of the all-digital phase-locked loop with built-in automatic compensation to ensure modulation accuracy. The receiver employs a discrete-time architecture in which the RF signal is directly sampled and processed using analog and digital signal processing techniques. The complete chip also integrates power management functions and a digital baseband processor. Application of the presented ideas has resulted in significant area and power savings while producing structures that are amenable to migration to more advanced deep-submicron processes, as they become available. The entire IC occupies 10 mm2 and consumes 28 mA during transmit and 41 mA during receive at 1.5-V supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 12 )
RFIC Virtual Journal, IEEE