By Topic

Modeling of TE cooling of pump lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Labudovic, M. ; Optovia Corp., Acton, MA, USA ; Jin Li

The pump laser is a key module in optical amplifiers for long-haul fiber optic telecommunication systems. Its core component is a semiconductor laser diode mounted on a thermoelectric cooler. It is of crucial importance to maintain the laser diode temperature in a narrow range during operation in order to achieve satisfactory performance and reliability of the module. Therefore, a proper thermal management solution is very important to the pump module design. In this paper, a three-dimensional finite element analysis on thermoelectric cooling is presented. The modeling results show good agreement with the experimental results obtained by IR thermometry. When the heat source has a high power dissipation and a small footprint compared to the size of the heat sink, the spreading resistance becomes important. To analyze the maximum performance of the heat sink, both single and dual pump module configurations are considered.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:27 ,  Issue: 4 )