Cart (Loading....) | Create Account
Close category search window

Carbon nanotube applications in microelectronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hoenlein, W. ; Corp. Res. Dept., Munich, Germany ; Kreupl, F. ; Duesberg, G.S. ; Graham, A.P.
more authors

The extraordinary characteristics of carbon nanotubes make them a promising candidate for applications in microelectronics. Catalyst-mediated chemical vapor deposition growth is very well suited for selective in-situ growth of nanotubes compatible with the requirements of microelectronics technology. This deposition method can be exploited for carbon nanotube vias. Semiconducting single-walled tubes can be successfully operated as carbon nanotube field effect transistors (CNTFET). A simulation of an ideal CNTFET is presented and compared with the requirements of the ITRS roadmap. Finally, we compare an upgraded CNTFET with the most advanced silicon metal oxide semiconductor field effect transistors and discuss integration issues.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:27 ,  Issue: 4 )

Date of Publication:

Dec. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.