By Topic

Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Koh, T.S. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Wu, X.Y. ; Cheong, L.H. ; Lim, C.C.T.

The assessment of tissue perfusion by dynamic contrast-enhanced (DCE) imaging involves a deconvolution process. For analysis of DCE imaging data, we implemented a regression approach to select appropriate regularization parameters for deconvolution using the standard and generalized singular value decomposition methods. Monte Carlo simulation experiments were carried out to study the performance and to compare with other existing methods used for deconvolution analysis of DCE imaging data. The present approach is found to be robust and reliable at the levels of noise commonly encountered in DCE imaging, and for different models of the underlying tissue vasculature. The advantages of the present method, as compared with previous methods, include its efficiency of computation, ability to achieve adequate regularization to reproduce less noisy solutions, and that it does not require prior knowledge of the noise condition. The proposed method is applied on actual patient study cases with brain tumors and ischemic stroke, to illustrate its applicability as a clinical tool for diagnosis and assessment of treatment response.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 12 )