Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ray, N. ; Dept. of Electr. & Comput. Eng./Biomed. Eng., Univ. of Virginia, Charlottesville, VA, USA ; Acton, S.T.

Recording rolling leukocyte velocities from intravital microscopic video imagery is a critical task in inflammation research and drug validation. Since manual tracking is excessively time consuming, an automated method is desired. This paper illustrates an active contour based automated tracking method, where we propose a novel external force to guide the active contour that takes the hemodynamic flow direction into account. The construction of the proposed force field, referred to as motion gradient vector flow (MGVF), is accomplished by minimizing an energy functional involving the motion direction, and the image gradient magnitude. The tracking experiments demonstrate that MGVF can be used to track both slow- and fast-rolling leukocytes, thus extending the capture range of previously designed cell tracking techniques.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 12 )