Cart (Loading....) | Create Account
Close category search window
 

H.264 video communication based refined error concealment schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanling Xu ; Inst. of Image Commun. & Information Process., Shanghai Jiaotong Univ., China ; Yuanhua Zhou

Error resilience is an essential problem for video communications, such as digital TV broadcasting, mobile video terminals and video telephone. The latest video compression standard H.264/AVC provides more coding efficiency for a wide range of video consumer applications. Yet H.264 video streams are still vulnerable to transmission errors. In this paper, a set of error concealment techniques are proposed to provide error resilience based on new coding and network characteristics of H.264. The temporal concealment involves a method of subblock-based refined motion compensated concealment using weighting boundary match, which improves the ability to deal with high motion activity areas. The spatial concealment scheme involves an algorithm of refined directional weighted spatial interpolation, which could protect object edge integrity. Combining the above algorithms, an adaptive spatial/temporal estimation method with low complexity is presented. Transmission over typical 3GPP/3GPP2 mobile IP channels is simulated with a wide range of bit rate and BER. The refined concealment techniques provide more error robustness for video consumer electronics than those suggested in H.264 without any encoder-side modifications.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:50 ,  Issue: 4 )

Date of Publication:

Nov. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.