By Topic

Modeling and improved current control of series resonant converter with nonperiodic integral cycle mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jung Ho Ko ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Sung Soo Hong ; Kim, M.G. ; Myung Joong Youn

A dynamic modeling and an improved current control technique for a series resonant power converter with nonperiodic integral cycle mode are proposed to overcome the disadvantages of an integral cycle mode-controlled series resonant converter. The internal operational characteristics, are investigated in detail and an improved current control technique is developed based on this analysis. Using the proposed control technique, the minimized current ripple with reduced offset current and the fast transient response with negligible overshoot can be obtained. Furthermore, the continuous output voltage levels can also be available by accurately controlling the average filter input current. The usefulness of the proposed technique is verified through computer simulations and experiments

Published in:

Power Electronics, IEEE Transactions on  (Volume:7 ,  Issue: 2 )