By Topic

Accurate software performance estimation using domain classification and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oyamada, M.S. ; Inst. de Inf., Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil ; Zschornack, F. ; Wanger, F.R.

For the design of an embedded system, there is a variety of available processors, each one offering a different trade-off concerning factors such as performance and power consumption. High-level performance estimation of the embedded software implemented in a particular architecture is essential for a fast design space exploration, including the choice of the most appropriate processor. However, advanced architectures present many features, such as deep pipelines, branch prediction mechanisms and cache sizes, that have a non-linear impact on the execution time, which becomes hard to evaluate. In order to cope with this problem, this paper presents a neural network based approach for high-level performance estimation, which easily adapts to the non-linear behavior of the execution time in such advanced architectures. A method for automatic classification of applications is proposed, based on topological information extracted from the control flow graph of the application, enabling the utilization of domain-specific estimators and thus resulting in more accurate estimates. Practical experiments on a variety of benchmarks show estimation results with a mean error of 6.41% and a maximum error of 32%, which is more precise than previous work based on linear and non-linear approaches.

Published in:

Integrated Circuits and Systems Design, 2004. SBCCI 2004. 17th Symposium on

Date of Conference:

7-11 Sept. 2004