By Topic

A formal software synthesis approach for embedded hard real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Barreto, R. ; Centro de Inf., Univ. Fed. de Pernambuco, Recife, Brazil ; Neves, M. ; Oliveira, M. ; Maciel, P.
more authors

Software synthesis is defined as the task of translating a specification into a software program, in a general purpose language, in such a way that this software can be compiled by conventional compilers. In general, complex real-time systems rely on specialized operating system kernels. However, the operating system usage may introduce significant overheads as in execution time as in memory requirement. In order to eliminate such overheads, automatic software synthesis methods should be implemented. Such methods comprise real-time operating system services (scheduling, resource management, communication, synchronization), and code generation. Formal methods are a very promising alternative to deal with the complexity of embedded systems, and for improving the degree of confidence in critical systems. We present a formal approach for automatic embedded hard real-time software synthesis based on time Petri nets. In order to illustrate the practical usability of the proposed method, it is shown how to synthesize a C code implementation using a heated-humidifier case study.

Published in:

Integrated Circuits and Systems Design, 2004. SBCCI 2004. 17th Symposium on

Date of Conference:

7-11 Sept. 2004