By Topic

A multi-level approach to the dependability analysis of networked systems based on the CAN protocol

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. Corno ; Dipt. di Autom. e Inf., Politecnico di Torino, Italy ; J. P. Acle ; M. S. Reorda ; M. Violante

Safety-critical applications are now common where both digital and mechanical components are deployed, as in the automotive fields. The analysis of the dependability of such systems is a particularly complex task that mandates modeling capabilities in both the discrete and in the continuous domains. To tackle this problem a multi-level approach is presented here, which is based on abstract functional models to capture the behavior of the whole system, and on detailed structural models to cope with the details of system components. In this paper, we describe how the interaction between the two levels of abstraction is managed to provide accurate analysis of the dependability of the whole system. In particular, the proposed technique is shown to be able to identify faults affecting the CAN network whose effects are most likely to be critical for vehicle's dynamic. Exploiting the information about the effects of these faults, they can then be further analyzed at the higher level of details.

Published in:

Integrated Circuits and Systems Design, 2004. SBCCI 2004. 17th Symposium on

Date of Conference:

7-11 Sept. 2004