By Topic

Blind and training-assisted subspace code-timing estimation for CDMA with bandlimited chip waveforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amleh, K. ; Dept. of Eng., Pennsylvania State Univ., Mont Alto, PA, USA ; Hongbin Li ; Tao Li

In this paper, we present a group of subspace code-timing estimation algorithms for asynchronous code-division multiple-access (CDMA) systems with bandlimited chip waveforms. The proposed schemes are frequency-domain based techniques that exploit a unique structure of the received signal in the frequency domain. They can be implemented either blindly or in a training-assisted manner. The proposed blind code-timing estimators require only the spreading code of the desired user, whereas the training-assisted schemes assume the additional knowledge of the transmitted symbols of the desired user. Through a design parameter of user choice, the proposed schemes offer flexible tradeoffs between performance, user capacity, and complexity. They can deal with both time- and frequency-selective fading channels. Numerical simulations show that the proposed schemes are near-far resistant, and compare favorably to an earlier subspace code-timing estimation scheme that is implemented in the time domain.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 6 )