By Topic

A wavelet-based multisensor data fusion algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lijun Xu ; Sch. of Electr. Eng. & Autom., Tianjin Univ., China ; Jian Qiu Zhang ; Yong Yan

This paper presents a wavelet transform-based data fusion algorithm for multisensor systems. With this algorithm, the optimum estimate of a measurand can be obtained in terms of minimum mean square error (MMSE). The variance of the optimum estimate is not only smaller than that of each observation sequence but also smaller than the arithmetic average estimate. To implement this algorithm, the variance of each observation sequence is estimated using the wavelet transform, and the optimum weighting factor to each observation is obtained accordingly. Since the variance of each observation sequence is estimated only from its most recent data of a predetermined length, the algorithm is self-adaptive. This algorithm is applicable to both static and dynamic systems including time-invariant and time-varying processes. The effectiveness of the algorithm is demonstrated using a piecewise-smooth signal and an actual time-varying flow signal.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:53 ,  Issue: 6 )