By Topic

The effect of electric field strength on the induction charge of freely levitating particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yishui Wu ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, Canada ; Castle, G.S.P. ; Inculet, I.I. ; Petigny, S.
more authors

Many industrial processes such as electrostatic separation, fluidization, and coating rely upon induction charging of fine particles. This paper considers the effects of electric field strength on the magnitude of the induction charge on freely levitating particles. The charging time and charge on a freely levitating particle depend on a number of properties, mainly the electric field strength, particle size, density, and resistivity. A charging model showing the dependence upon the electric field strength is presented and analyzed, along with a model of the levitation process. A high-speed digital imaging system was used to measure individual particle motion during levitation. Using these data along with the developed models, it was possible to determine the charge on the particle. Semiconductive particles with a mass mean diameter (MMD) of 156 μm were used in these experiments and tested at electric fields of 6.8, 8.5, 15, and 21 kV/cm, respectively. In addition, some experiments using particles 97-μm and 412-μm MMD at an electric field of 15 kV/cm were carried out to confirm the results obtained for the 156-μm particles. It was found that the particle charge was dependent upon both the charging time and electric field strength. In particular, for high electric fields the particle did not achieve its saturation charge before liftoff occurred. This shows that higher electric field strength is not necessarily the optimum condition for levitation of semiconductive particles.

Published in:

Industry Applications, IEEE Transactions on  (Volume:40 ,  Issue: 6 )