By Topic

Student modeling using principal component analysis of SOM clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien-Sing Lee ; Fac. of Inf. Technol., Multimedia Univ., Selangor, Malaysia ; Singh, Y.P.

Adaptive hypermedia learning systems aim to improve the usability of hypermedia by personalizing domain knowledge to the students' needs (represented by the student model). This study investigates student modeling via machine-learning techniques. Two techniques are applied and compared to provide meaningful analysis and class labels of the student clusters. The first technique is clustering of the student data set using principal component analysis. The second technique involves two-levels of clustering: the self organizing map at the first level and principal component analysis at the second level. Cluster analysis via these two techniques determine the number of clusters, the class labels based on the degree of variance and eigenvectors, which can represent the knowledge states of each cluster or group of students. It is found that implementing the self-organizing map as a preprocessor to principal component analysis improves the quality of cluster analysis. Findings are supported by experimental results.

Published in:

Advanced Learning Technologies, 2004. Proceedings. IEEE International Conference on

Date of Conference:

30 Aug.-1 Sept. 2004