By Topic

Automatic seabed classification by the analysis of sidescan sonar and bathymetric imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Atallah, L. ; Inst. for Adaptive & Neural Comput., Edinburgh Univ., UK ; Smith, P.J.P.

The authors present a technique for making use of both sidescan amplitude and bathymetric data provided from sidescan bathymetric sonars for the classification of underwater seabeds. Sidescan amplitude is corrected for physical factors and used to plot 'processed' sidescan images. Both amplitude and textural features are derived from these images. Textural features are obtained using 2-D discrete wavelet transforms. Bathymetric images are used to derive features indicating seafloor variability. These features are combined together and the most relevant ones are selected by feature selection algorithms. If grab samples are available, the areas around them are used as training data in a supervised approach. The backpropagation elimination algorithm is used on the training dataset to select relevant features. If training data are not available, an unsupervised approach can be used. The dimensions of the whole dataset are reduced using principal component analysis in this case, and the principal components are used as features. In both cases, clustering techniques are used to cluster the data into sediment classes. The classified points are then plotted against their GIS position in the survey. Classification results correlate with grab sample types from the areas considered (in the supervised case) and with expert observation of sidescan images, where training data is not available.

Published in:

Radar, Sonar and Navigation, IEE Proceedings -  (Volume:151 ,  Issue: 5 )