Cart (Loading....) | Create Account
Close category search window
 

Channel aware decision fusion in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Biao Chen ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA ; Ruixiang Jiang ; Kasetkasem, T. ; Varshney, P.K.

Information fusion by utilizing multiple distributed sensors is studied in this work. Extending the classical parallel fusion structure by incorporating the fading channel layer that is omnipresent in wireless sensor networks, we derive the likelihood ratio based fusion rule given fixed local decision devices. This optimum fusion rule, however, requires perfect knowledge of the local decision performance indices as well as the fading channel. To address this issue, two alternative fusion schemes, namely, the maximum ratio combining statistic and a two-stage approach using the Chair-Varshney fusion rule, are proposed that alleviate these requirements and are shown to be the low and high signal-to-noise ratio (SNR) equivalents of the likelihood-based fusion rule. To further robustify the fusion rule and motivated by the maximum ratio combining statistics, we also propose a statistic analogous to an equal gain combiner that requires minimum a priori information. Performance evaluation is performed both analytically and through simulation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 12 )

Date of Publication:

Dec. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.