By Topic

Fast feedthrough logic: a high performance logic family for GaAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nooshabadi, S. ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Montiel-Nelson, J.A.

A GaAs dynamic logic family using the feedthrough evaluation concept is presented in this paper. Feedthrough logic (FTL) allows the outputs to be partially generated before the input signals arrive. A modified version of this logic, where the function and its complement are implemented in a differential structure, is also introduced. In an FTL gate, the logic outputs are reset to low during the high phase of the clock and evaluated during the low phase of the clock. Resetting to low alleviates the problems of charge sharing and leakage current associated with the other GaAs dynamic logic families. FTL logic functions can be cascaded in a domino-like fashion without a need for the intervening inverters. We employ this novel concept to design several arithmetic circuits. We compare a 4-bit ripple carry adder in FTL with the other published works in terms of device count, area, delay, clock rate and power consumption. The results demonstrate that FTL is the simplest, the fastest, and consumes least power. In addition, our FTL design compares very well with the standard CMOS technology. FTL gates are fully compatible with direct coupled field-effect transistor logic (DCFL), and therefore, can be included in a DCFL standard cell library for improving cell-based ASIC performance. To match the high-speed of the FTL combinational blocks, we present a single-ended latch for pipelining the FTL blocks. Comparisons with the other published results demonstrate the superior performance of our dynamic latch.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:51 ,  Issue: 11 )