By Topic

Radix-based digital calibration techniques for multi-stage recycling pipelined ADCs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong-Young Chang ; Texas Instrum. Inc., Tucson, AZ, USA ; Jipeng Li ; Un-Ku Moon

This work describes a digital-domain self-calibration technique for multistage pipelined analog-to-digital converters (ADCs). By making the signal paths of both the input and the reference voltage the same, all error factors within a stage are merged into a single term which represents the equivalent radix number. The initially estimated radix for each stage mathematically iterates to the final correct value via an incremental update algorithm, after foreground calibration measurements are obtained during ADCs recycling mode of operation. In this way, an accurate calibration is achieved using a modified radix-based calculation. Two different single-bit-per-stage ADC adaptation/calibration methods are presented as examples. The proposed technique compensates for linear errors such as capacitor mismatches as well as finite opamp gain.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:51 ,  Issue: 11 )