Cart (Loading....) | Create Account
Close category search window
 

Trained detection of buried mines in SAR images via the deflection-optimal criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cosgrove, R.B. ; SRI Int., Menlo Park, CA, USA ; Milanfar, P. ; Kositsky, J.

In this paper, we apply a deflection-optimal linear-quadratic detector to the detection of buried mines in images formed by a forward-looking ground-penetrating synthetic aperture radar. The detector is a linear-quadratic form that maximizes the output SNR (deflection), and its parameters are estimated from a set of training data. We show that this detector is useful when the signal to be detected is expected to be stochastic, with an unknown distribution, and when only a small set of training data is available to estimate its statistics. The detector structure can be understood in terms of the singular value decomposition; the statistical variations of the target signature are modeled using a compact set of orthogonal "eigenmodes" (or principal components) of the training dataset. Because only the largest eigenvalues and associated eigenvectors contribute, statistical variations that are underrepresented in the training data do not significantly corrupt the detector performance. The resulting detection algorithm is tested on data that are not in the training set, which has been collected at government test sites, and the algorithm performance is reported.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 11 )

Date of Publication:

Nov. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.