By Topic

EMI-based classification of multiple closely spaced subsurface objects via independent component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Hu ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; S. L. Tantum ; L. M. Collins

Previous work in subsurface object discrimination using electromagnetic induction data has shown that discrimination algorithms based on statistical signal processing techniques are effective for classifying data from objects that occur in isolation. However, for multiple closely spaced subsurface objects, the raw (unprocessed) measurement is a mixture of the responses from several objects and as such cannot be used directly to determine the identity of each of the individual objects. Thus, we propose to separate individual signatures from the mixture by posing the problem as a blind source separation (BSS) problem and effecting signature separation using independent component analysis. We propose to apply BSS to separate the mixed signatures and then follow the separation process with a Bayesian classifier. This approach is evaluated using both simulated data and data from unexploded ordnance items. The results show that this approach can be used to effectively classify multiple closely spaced objects.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:42 ,  Issue: 11 )