By Topic

Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. F. U. Gotardo ; IMAGO Res. Group, Univ. Fed. do Parana, Curitiba, Brazil ; O. R. P. Bellon ; K. L. Boyer ; L. Silva

This paper presents a novel range image segmentation method employing an improved robust estimator to iteratively detect and extract distinct planar and quadric surfaces. Our robust estimator extends M-estimator Sample Consensus/Random Sample Consensus (MSAC/RANSAC) to use local surface orientation information, enhancing the accuracy of inlier/outlier classification when processing noisy range data describing multiple structures. An efficient approximation to the true geometric distance between a point and a quadric surface also contributes to effectively reject weak surface hypotheses and avoid the extraction of false surface components. Additionally, a genetic algorithm was specifically designed to accelerate the optimization process of surface extraction, while avoiding premature convergence. We present thorough experimental results with quantitative evaluation against ground truth. The segmentation algorithm was applied to three real range image databases and competes favorably against eleven other segmenters using the most popular evaluation framework in the literature. Our approach lends itself naturally to parallel implementation and application in real-time tasks. The method fits well into several of today's applications in man-made environments, such as target detection and autonomous navigation, for which obstacle detection, but not description or reconstruction, is required. It can also be extended to process point clouds resulting from range image registration.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 6 )