By Topic

T-S model based indirect adaptive fuzzy control using online parameter estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang-Woo Park ; Precision Machinery Res. Center, Korea Electron. Technol. Inst., Kyunggi-Do, South Korea ; Young-Wan Cho

A parameter estimation scheme with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory for the general MIMO Takagi-Sugeno (T-S) fuzzy models. The parameters of the Takagi-Sugeno fuzzy models can be estimated by observing the behavior of the system and with the online parameter estimator, any type of fuzzy controllers works adaptively to the parameter perturbation. In order to show the applicability of the proposed estimator, an existing fuzzy state feedback controller is adopted and indirect adaptive fuzzy control design with the proposed estimator is shown. From the numerical simulations and experiments, it is shown that the derived adaptive law works for the estimation model to follows the parameterized plant model and the overall control system has robustness to the parameter perturbation.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 6 )