System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Edge detection in ultrasound imagery using the instantaneous coefficient of variation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongjian Yu ; Dept. of Radiat. Oncology, Univ. of Virginia Health Syst., Charlottesville, VA, USA ; Acton, S.T.

The instantaneous coefficient of variation (ICOV) edge detector, based on normalized gradient and Laplacian operators, has been proposed for edge detection in ultrasound images. In this paper, the edge detection and localization performance of the ICOV-squared (ICOVS) detector are examined. First, a simplified version of the ICOVS detector, the normalized gradient magnitude squared, is scrutinized in order to reveal the statistical performance of edge detection and localization in speckled ultrasound imagery. Both the probability of detection and the probability of false alarm are evaluated for the detector. Edge localization is characterized by the position of the peak and the 3-dB width of the detector response. Then, the speckle-edge response of the ICOVS as applied to a realistic edge model is studied. Through theoretical analysis, we reveal the compensatory effects of the normalized Laplacian operator in the ICOV edge detector for edge-localization error. An ICOV-based edge-detection algorithm is implemented in which the ICOV detector is embedded in a diffusion coefficient in an anisotropic diffusion process. Experiments with real ultrasound images have shown that the proposed algorithm is effective in extracting edges in the presence of speckle. Quantitatively, the ICOVS provides a lower localization error, and qualitatively, a dramatic improvement in edge-detection performance over an existing edge-detection method for speckled imagery.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 12 )