By Topic

Robust image-adaptive data hiding using erasure and error correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Solanki, K. ; Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA ; Jacobsen, N. ; Madhow, U. ; Manjunath, B.S.
more authors

Information-theoretic analyses for data hiding prescribe embedding the hidden data in the choice of quantizer for the host data. We propose practical realizations of this prescription for data hiding in images, with a view to hiding large volumes of data with low perceptual degradation. The hidden data can be recovered reliably under attacks, such as compression and limited amounts of image tampering and image resizing. The three main findings are as follows. 1) In order to limit perceivable distortion while hiding large amounts of data, hiding schemes must use image-adaptive criteria in addition to statistical criteria based on information theory. 2) The use of local criteria to choose where to hide data can potentially cause desynchronization of the encoder and decoder. This synchronization problem is solved by the use of powerful, but simple-to-implement, erasures and errors correcting codes, which also provide robustness against a variety of attacks. 3) For simplicity, scalar quantization-based hiding is employed, even though information-theoretic guidelines prescribe vector quantization-based methods. However, an information-theoretic analysis for an idealized model is provided to show that scalar quantization-based hiding incurs approximately only a 2-dB penalty in terms of resilience to attack.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 12 )