By Topic

Efficient computation of the Hutchinson metric between digitized images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Drakopoulos, V. ; Dept. of Informatics & Telecommun., Univ. of Athens, Greece ; Nikolaou, N.P.

The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 12 )