Cart (Loading....) | Create Account
Close category search window
 

Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Younis, O. ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Fahmy, Sonia

Prolonged network lifetime, scalability, and load balancing are important requirements for many ad-hoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energy-efficient approach for clustering nodes in ad-hoc sensor networks. Based on this approach, we present a protocol, HEED (hybrid energy-efficient distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED does not make any assumptions about the distribution or density of nodes, or about node capabilities, e.g., location-awareness. The clustering process terminates in O(1) iterations, and does not depend on the network topology or size. The protocol incurs low overhead in terms of processing cycles and messages exchanged. It also achieves fairly uniform cluster head distribution across the network. A careful selection of the secondary clustering parameter can balance load among cluster heads. Our simulation results demonstrate that HEED outperforms weight-based clustering protocols in terms of several cluster characteristics. We also apply our approach to a simple application to demonstrate its effectiveness in prolonging the network lifetime and supporting data aggregation.

Published in:

INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies  (Volume:1 )

Date of Conference:

7-11 March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.