By Topic

Traffic grooming, routing, and wavelength assignment in optical WDM mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hu, J.Q. ; Boston Univ., Brookline, MA, USA ; Leida, B.

In this paper, we consider the traffic grooming, routing, and wavelength assignment (GRWA) problem for optical mesh networks. In most previous studies on optical mesh networks, traffic demands are usually assumed to be wavelength demands, in which case no traffic grooming is needed. In practice, optical networks are typically required to carry a large number of lower rate (sub-wavelength) traffic demands. Hence, the issue of traffic grooming becomes very important since it can significantly impact the overall network cost. In our study, we consider traffic grooming in combination with traffic routing and wavelength assignment. Our objective is to minimize the total number of transponders required in the network. We first formulate the GRWA problem as an integer linear programming (ILP) problem. Unfortunately, for large networks it is computationally infeasible to solve the ILP problem. Therefore, we propose a decomposition method that divides the GRWA problem into two smaller problems: the traffic grooming and routing problem and the wavelength assignment problem, which can then be solved much more efficiently. In general, the decomposition method only produces an approximate solution for the GRWA problem. However, we also provide some sufficient condition under which the decomposition method gives an optimal solution. Finally, some numerical results are provided to demonstrate the efficiency of our method.

Published in:

INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies  (Volume:1 )

Date of Conference:

7-11 March 2004