Cart (Loading....) | Create Account
Close category search window

Analysis and design of series-parallel resonant power supply

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bhat, A.K.S. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada

A modified series-parallel high-frequency resonant DC/DC converter configuration is proposed. A simplified steady-state analysis of the converter, including the effect of a high-frequency transformer using complex circuit analysis, is presented. Based on the analysis, a simple design procedure is given. The effect of magnetizing inductances of the high-frequency transformer on the performance of the converter is discussed. Detailed experimental results obtained from a MOSFET (metal-oxide-semiconductor field-effect-transistor)-based 1-kW converter are presented to verify the analysis. The converter presented has almost constant efficiency from full load to quarter load, and the converter has load short circuit capability

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:28 ,  Issue: 1 )

Date of Publication:

Jan 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.