By Topic

Quantum wire lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
E. Kapon ; Bellcore, Red Bank, NJ, USA

Recent progress in the development of the concept and technology of semiconductor quantum wire (QWR) lasers is reviewed. In these quasi-one-dimensional structures, optical gain is provided by charge carriers that are quantum mechanically confined in two dimensions within wire-like active regions. These devices are expected to exhibit improved laser performance, including extremely low threshold currents (in the μA range), higher modulation bandwidth, narrower spectral linewidth, and reduced temperature sensitivity. QWR lasers would thus be particularly useful in applications involving densely packed laser arrays and monolithic integration of lasers with low-power electronics, including computer optical interconnects, optical computing, and integrated optoelectronic circuits. Approaches for fabricating these novel structures are reviewed, and recent successful demonstrations of lasing in semiconductor QWRs are described. Prospects for further progress in this area are also discussed

Published in:

Proceedings of the IEEE  (Volume:80 ,  Issue: 3 )