By Topic

A space-mapping interpolating surrogate algorithm for highly optimized EM-based design of microwave devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bandler, J.W. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Hailu, D.M. ; Madsen, K. ; Pedersen, F.

We justify and elaborate in detail on a powerful new optimization algorithm that combines space mapping (SM) with a novel output SM. In a handful of fine-model evaluations, it delivers for the first time the accuracy expected from classical direct optimization using sequential linear programming. Our new method employs a space-mapping-based interpolating surrogate (SMIS) framework that aims at locally matching the surrogate with the fine model. Accuracy and convergence properties are demonstrated using a seven-section capacitively loaded impedance transformer. In comparing our algorithm with major minimax optimization algorithms, the SMIS algorithm yields the same minimax solution within an error of 10-15 as the Hald-Madsen algorithm. A highly optimized six-section H-plane waveguide filter design emerges after only four HFSS electromagnetic simulations, excluding necessary Jacobian estimations, using our algorithm with sparse frequency sweeps.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 11 )